If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+10a-72=0
a = 3; b = 10; c = -72;
Δ = b2-4ac
Δ = 102-4·3·(-72)
Δ = 964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{964}=\sqrt{4*241}=\sqrt{4}*\sqrt{241}=2\sqrt{241}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{241}}{2*3}=\frac{-10-2\sqrt{241}}{6} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{241}}{2*3}=\frac{-10+2\sqrt{241}}{6} $
| 425x-10000-x^2=0 | | 425-10000-x^2=0 | | 3a^2+10-72=0 | | 5x/6=3x-18/4 | | p/8+5=6 | | 6+5=p/8 | | 4x+x+2x+5x=360 | | 3z-1/3=9 | | (16b-4)-5(3b+3)=-7 | | (16b-4)-5(3b+3)=7 | | 6s+12=6s+48 | | -1/7b=-2/7 | | 23p+4p^2=-15 | | -3/10b=2/5 | | 3(x—3)=9 | | -1/5b=-3/5 | | 60=x^2-6x+5 | | 28=-4b | | -33=9-7x-3 | | -33=9-7x1 | | -33=9-7x6 | | -a/5=3 | | -33=9-7x-9 | | 5x−4=−19x | | -4/7y=-16 | | 6y−20=2(5y−6) | | 2x-9=3x+10 | | 5x+4x-1=17 | | 4=a-2/3 | | -4=b-1/7 | | 5/6y=23 | | x-3x÷4=5 |